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The stability of interstitial defect and dislocation structures in bcc Fe as a function of temperature is believed
to play a crucial role in determining defect evolution under irradiation conditions. The vibrational properties of
defects constitute one contribution to the corresponding energetics and much work has been done within the
harmonic approximation to determine the vibrational formation free energy and formation entropy of such
defects. Defects can however exhibit strong local strain fields that break the cubic symmetry of the bcc lattice
leading to large anharmonicities and a breakdown of the harmonic approximation as an accurate means to
calculate vibrational thermodynamic quantities. Moreover, if defect diffusion is active at a time scale compa-
rable to an atomic vibration, strong anharmonicities will always be present at any finite temperature. The
current work investigates the vibrational free energy and entropy of the �110� self-interstitial dumbbell defect
in bcc Fe using both harmonic and anharmonic free-energy calculation methods for a range of modern em-
pirical potentials. It is found that depending on the empirical potential and for temperatures where diffusion is
limited, the harmonic approximation is justified especially for empirical potentials that have been fitted to
third-order elastic constants. The unique applicability range of such calculations for bcc Fe is also discussed
given that with rising temperature spin fluctuations become increasingly important ultimately leading to a
softening of the 110 shear modulus and to the �-bcc /�-bcc structural phase transformation.

DOI: 10.1103/PhysRevB.79.214109 PACS number�s�: 61.72.jj, 63.20.Ry, 65.40.gd

I. INTRODUCTION

In recent years there has been considerable activity within
the radiation damage community to develop reliable and
transferable empirical potentials for bcc Fe. This has been
partly made possible by the availability of ab initio-
calculated interstitial defect energies where, unique to bcc
Fe, it is the �110� dumbbell interstitial defect that has the
lowest energy.1–3 The embedded atom method �EAM� poten-
tials of Mendelev4,5 have been directly fitted to this data and
more recently also the magnetic potential �MP�,6,7 which ex-
plicitly takes into account the 0 K ferromagnetic aspect of
bcc Fe. When using these potentials, defect statistics derived
from multiple primary damage state cascade simulations ap-
pear to converge with respect to the total number of Frenkel
Pairs produced.8 However, some discrepancies still persist
regarding the total number of clusters of point defects, indi-
cating differences between the empirical potentials that can-
not be controlled via knowledge of only the single interstitial
defect energies. The static and dynamic properties of such
complex defect structures are thus of increasing interest
where detailed studies of vacancy and interstitial loop ener-
getics and mobility,9–11 as well as defect cluster interaction,12

have been undertaken.
The vibrational properties of defects gives information

about how a defect behaves at a finite temperature within a
molecular-dynamics simulation and can be used to investi-
gate the stability of defects through a comparison of the for-
mation free energies. These vibrational properties are gener-
ally calculated within the harmonic approximation13 to the
crystal potential enabling a straightforward determination of

thermodynamic quantities such as the vibrational free energy,
entropy, and heat capacity. Moreover, through an analysis of
the low-frequency modes, information can be gained at pos-
sible transition pathways for structural migration or transfor-
mation of defects. Work of this nature has been done to in-
vestigate the relative stability as a function of temperature of
�110� and �111� single interstitials14 as well as small clusters
of interstitials forming either glissile prismatic loops14 or so-
called “self-trapped” sessile structures.15 Work comparing
the harmonic vibrational properties of vacancies with single
interstitial and small interstitial loops for the above-
mentioned empirical potentials has however revealed a wide
spread in the defect formation entropies and therefore the
temperature behavior of the corresponding formation free
energies.14 A recent ab initio calculation of the harmonic
vibrational properties of the �110� and �111� dumbbell inter-
stitials in bcc Fe �Ref. 16� now provides additional data
through which a quantitative assessment of an empirical po-
tential can be made.

It is however unclear to what extent the harmonic term
contributes to the total free energy of the defect. For a perfect
lattice containing inversion symmetry, third-order anhar-
monic contributions are expected to cancel at low tempera-
tures and it is only at the fourth order that anharmonic con-
tributions will begin to be present. At higher temperatures,
where the atomic vibrations increasingly deviate away from
the perfect lattice configuration, a non-negligble anharmonic
contribution to the vibrational entropy and corresponding
free energy will increasingly occur.17 For the case of inter-
stitials, which break the lattice symmetry at and around the
core of the defect and also involve large local compressive
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strains, little knowledge exists about the magnitude of the
anharmonic contribution to the free energy. Additionally, the
harmonic approach to estimating the free energy becomes
problematic when defect diffusion occurs at a time scale
comparable to the characteristic vibrational period of the de-
fect. In this regime, where a diffusion event �a so-called lat-
tice “hop”� may no longer be considered a rare event, the
defect cannot reach local thermal equilibrium before the next
migration and the concept of a harmonic ground state be-
comes meaningless.

When this occurs, the usual transition state theory model
of diffusion is no longer applicable and more general many-
atom models that model the nonlinear dynamics of a defect
must be considered such as the Frenkel-Kontorova model18

which has been recently applied to understand the mobility
of �111� crowdion single interstitial defects in nonmagnetic
group 5B and 6B bcc transition metals.19

The main goal of this paper is to investigate the anhar-
monic contribution to the total formation free energy of the
single �110� dumbbell interstitial by comparing the usual
harmonic result with the anharmonic free energy obtained
using a thermodynamic integration technique. This is done
for the two well-known EAM Mendelev Fe potentials
�Mendelev-2003 �Ref. 4� and Mendelev-2004 �Ref. 5�� and
the published MP �MP-CS2� �Ref. 7�, and also for two un-
published MPs �MP-CS3-00 and MP-CS3-30� that are addi-
tionally fitted to experimental low-temperature third-order
elastic stiffness constants and are also able to reproduce cor-
rectly the nondegenerate core structure of the 1

2 �111� perfect
screw dislocation as do the Mendelev potentials but not the
MP-CS2 potential. These new MPs arise from a considerable
fitting effort in which an expanded materials database of both
experimental and ab initio defect data has been exploited
with the aim of producing a more accurate empirical poten-
tial for the radiation damage community. The Appendix con-
tains their corresponding parametrization and a brief expla-
nation of the MP, however, the full details of these potentials
as well as the unique fitting strategy will be published
separately.20 These empirical potentials are included in the
present work since by fitting to higher-order elastic con-
stants, experimental anharmonic information is now included
within their parametrization.

It is found that total formation entropies of the potentials
presently considered fall within a bandwidth of �6kB,
whereas the calculated harmonic formation free energies fall
within a bandwidth of �30kB. It is seen that for the case of
the Mendelev potentials and the newer MP fits, the harmonic
approximation is able to estimate well the total free energy
when calculating the vibrational free energy of the �110�
dumbbell interstitial, particularly in the latter case where the
new MPs are found to be strongly harmonic. In Sec. II, the
harmonic and anharmonic computational methods are out-
lined and in Sec. III the harmonic and anharmonic free en-
ergies are presented and their temperature dependences ratio-
nalized via a study of the defect’s corresponding vibrational
formation entropy. In Sec. IV the results are discussed in
terms of studying more complex defect structures and as-
sessed in light of the fact that for bcc Fe at finite tempera-
tures, magnetic fluctuations also contribute to the total free
energy of the defect structure.

II. COMPUTATIONAL METHODS

A. Harmonic approximation to the free energy

The most popular method to calculate vibrational free en-
ergy of a particular atomic configuration is based on the har-
monic approximation.13 Within this approximation, the po-

tential energy function E�R� 1 , . . . ,R� N� of a periodic system of
N atoms is expanded to the second order near a local minima
obtained either by conjugate gradient or molecular statics
structural relaxation methods. This local minimum defines
the zero-temperature ground-state structure of the atomic
configuration. Let the atomic coordinates of this local

minima be given by R� 1
0 , . . . ,R� N

0 and let u�1 , . . . ,u�N be small
displacements of the atoms away from this local minima.
Then we have

E�R� 1
0 + u�1, . . . ,R� N

0 + u�N� � Elocal +
1

2 	
i,j=1,. . .,N

�,�=x,y,z

ui
�Dij

��uj
�,

�1�

where � ,�=x ,y ,z refer to the Cartesian coordinate �polar-
ization� directions, i , j=1, . . . ,N are the atomic indices, and
Elocal=E�R� 1

0 , . . . ,R� N
0 � is the local energy minima. The trans-

lationally invariant force matrix is given by21

Dij
�� = �ij

�� − �ij	
k

�ik
��, �2�

where �̂ is the Hessian matrix of rank 3N defined by

�ij
�� = 
 �2E�R� 1, . . . ,R� N�

�Ri
� � Rj

� 

R� 1

0,. . .,R� N
0
. �3�

The classical vibrational free energy within the harmonic
approximation is then given by17

F�T,N� = Elocal + kBT 	
n=1

3N−3

ln��	n

kBT
� , �4�

where 	n=
 dn

M , n=1, . . . ,3N are the vibrational frequencies
of the system calculated from the eigenvalues dn of the force

matrix D̂. The sum in Eq. �4� excludes the zero-frequency
translational modes and thus spans the positive 3N−3 fre-
quencies. Here M is the mass of an Fe atom, � is the
Planck’s constant, and kB is the Boltzmann’s constant.

The local atomic vibrational free energy is given by

Fi
��T,N� = kBT 	

n=1

3N−3

�Ui,n
� �2ln��	n

kBT
� , �5�

where Ui,n
� is the projection onto atom i of the eigenvector

associated with the nth eigenvalue along the direction �, that

is, �̂Ũn=dnŨn. Note that due to the orthonormality of the

eigenvectors Ũn, F�T ,N�=Elocal+	
i�

Fi
��T ,N�. The use of local

atomic values of the vibrational free energy can give insight
to the microscopic origin of the bulk value F�T ,N�, particu-
larly when defect structures are considered. It is however the
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bulk value which is the physically meaningful quantity.
When considering either a perfect lattice or a defect struc-

ture, the corresponding atomic configuration is relaxed at a
particular volume to obtain the force matrix. The chosen vol-
ume can be the 0 K equilibrium value or a value obtained
from zero-pressure finite-temperature dynamical simulations.
Performing a harmonic expansion at the chosen volume will
result in the vibrational frequencies depending implicitly on
that volume—this approach is referred to as the quasihar-
monic approximation.21,22 In what follows, the harmonic free
energy will refer to a harmonic expansion at the 0 K equi-
librium volume whose temperature dependence arises explic-
itly via Eq. �4�. On the other hand, a quasiharmonic free
energy at a given temperature T arises from a harmonic ex-
pansion at a volume obtained from zero-pressure dynamical
simulations performed at temperature T where Eq. �4� is
evaluated only at T.

B. Estimation of the anharmonic contribution to the free
energy: The Frenkel-Ladd method

The free energy of a system is defined entirely by its
Hamiltonian, H1=H1��r�i , p� i�� and cannot be expressed as a
simple ensemble average such as can be done for internal
energy, heat capacity, and stress. However by constructing
the Hamiltonian

H�
� = 
H1 + �1 − 
�H0, �6�

where H0=H0��r�i , p� i�� is a reference Hamiltonian, the differ-
ence in free energy can be expressed in terms of a thermo-
dynamic integration over an ensemble average23 with respect
to H�
�

F1 − F0 = �
0

1 dF�
�
d


d
 = �
0

1 � �H�
�
�


�



d


= �
0

1

�H1 − H0�
d
 , �7�

where

�H1 − H0�
 =
1

Z

� dp�1 ¯ dp�Ndr�1 ¯ dr�N�H1 − H0�

�exp�− �H�
�� �8�

in which, Z
 is the corresponding partition function of
H�
�=
H1+ �1−
�H0, and �=1 /kBT.

Equation �4� can then be used to determine the total free
energy F1 of an N atom configuration by choosing a H0
=H0��r�i , p� i��, for which F0 is known, and calculating �H1
−H0�
 either via a molecular dynamics or an ensemble
Monte Carlo �MC� simulation. In the present work we em-
ploy as a reference Hamiltonian, H0; the harmonic expansion
around a local minima �Eq. �1� in the previous section� and
use the Monte Carlo numerical technique to determine the
ensemble average. In this way, Monte Carlo simulations will
yield F1−F0 via Eq. �7�, which is the anharmonic contribu-
tion to the free energy. Adding the harmonic contribution
�Eq. �4�� to this then gives the total free energy of the atomic
system.

III. RESULTS

A. Formation free energy of the Š110‹ interstitial dumbbell

The formation free energy of a point defect at temperature
T is defined as


F�T� = FDB�T,N + 1� −
N + 1

N
Fbcc�T,N� , �9�

where FDB�T ,N+1� and Fbcc�T ,N� are, respectively, the ab-
solute free energy of the periodic supercell containing N+1
atoms including the single interstitial and of the perfect bcc
periodic supercell containing N atoms. The formation free
energy may depend sensitively on whether the two supercells
have the same volume, the same volume per atom, or the
same pressure.

In the present section the free energy of the �110� dumb-
bell is calculated using the harmonic, the quasiharmonic, and
the thermodynamic integration methods. For all cases a pe-
riodic simulation cell consisting of 2001 atoms for the inter-
stitial configuration and 2000 atoms for the bcc reference
lattice is employed to ensure minimal supercell size effects.
For the harmonic calculation we relax the �110� dumbbell
configuration using molecular statics in a simulation cell that
has a fixed volume per atom equal to that of the 0 K equi-
librium bcc volume per atom. For the quasiharmonic calcu-
lation, the �110� dumbbell is further relaxed at fixed volumes
per atom corresponding to the 300, 400, 500, and 600 K
equilibrium bcc volume per atom obtained from zero pres-
sure molecular-dynamics simulations using the Parrinello-
Rahman barostat method.24 Table I shows the temperature-
dependent equilibrium bcc cohesive energies and volumes
for the empirical potentials used and we see that for the case
of the MP-CS2 potential thermal contraction rather than ther-
mal expansion occurs for the considered temperature range.
Table I also displays the relaxed defect formation energies of
the �110� dumbbell interstitial at these temperatures and cor-
responding fixed volumes per atom. For all empirical poten-
tials a decrease in the relaxed formation energies occurs with
decreasing temperature.

For the thermodynamic integration free-energy calcula-
tion, these fixed volumes per atom configurations are used in
constant volume ensemble MC simulations at the corre-
sponding temperatures to determine �H1−H0�
 for 

=0.00,0.05,0.1, . . . ,0.95,1.00 using the Frenkel-Ladd
method outlined in the previous section. To obtain a high
level of precision the ensemble averages are performed using
�108 accepted Monte Carlo steps. Each trial Monte Carlo
step involved a randomly chosen atom being randomly dis-
placed by a maximum distance of 0.1 Å. We note that by
keeping the volume fixed the present calculations do not con-
sider free-energy contributions arising from volume fluctua-
tions. Due to the translational invariance of the full Hamil-
tonian, H1=H1��r�i , p� i��, and therefore also of H�
� at 
=1,
the center of mass of the system is also coupled to an artifi-
cial harmonic oscillator to minimize fluctuations in H1−H0
as 
 approaches 1. The resulting free energies are then ac-
cordingly corrected using the known analytical result for the
free energy of a harmonic oscillator to yield the total free
energy of the defect.
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Figure 1 displays �H1−H0�
 for the interstitial defect, as a
function of 
 for the temperatures 300 and 600 K. Data for
all potentials are shown. Each data point represents the av-
erage of approximately 300 000–500 000 accepted Monte
Carlo steps. For the 300 K calculation good convergence is
seen for all values of 
 and the thermodynamic integration
may be easily performed. On the other hand, for the 600 K
calculation, �H1−H0�
 does not converge for 
 values at and
close to unity indicating large fluctuations in H1−H0 occur

during the MC sampling. The origin of such fluctuations lies
in the interstitial defect undergoing diffusion, where inspec-
tion of the 600 K atomic configurations derived from the
Monte Carlo simulations reveals that the �110� dumbbell has
moved to a rotated �110� dumbbell centered at a different site
which is consistent with the diffusion mechanism of the
nudged elastic band calculation of Fig. 2. This occurs natu-
rally in the full Hamiltonian of the system H1=H1��r�i , p� i��
while being entirely suppressed in the reference �harmonic�
Hamiltonian H0=H0��r�i , p� i��. At values of 
 close to unity,
diffusion is therefore allowed resulting in large values of H0
since the defect is far away from the Harmonic minimum.
This is a fundamental limitation of the Frenkel-Ladd method.

Although diffusion is present in the 600 K simulations,
the �110� dumbbell interstitial defect will spend most of its
time in its ground-state configuration and the lack of conver-
gence encountered in Fig. 1 can be remedied by standard
cubic-spline extrapolation of �H1−H0�
 to values of 
 near 1.
That diffusion occurs at 600 K is confirmed in Fig. 2, which
displays the minimum-energy migration pathway obtained
via a nudged elastic band calculation25 for the �110� dumb-
bell interstitial to “hop” a nearest-neighbor �NN� distance for
all potentials. We see that the barrier heights of the consid-
ered potentials range from 0.25 to 0.4 eV—a migration en-
ergy barrier scale that will easily facilitate diffusion within
the sampling size of the MC procedure used presently. The
consequences of this and more generally of diffusion are
very important when considering the free energy of a defect
and will be discussed in more details in Sec. III.

Figure 3 displays the harmonic, quasiharmonic, and total
formation free energies as a function of temperature for the
potentials considered. There are significant differences across
the empirical potentials due first to the different zero-
temperature formation energies �see Table I� and second to
the different temperature dependencies of the free energy.
The latter being particularly the case for MP-CS2 �Fig. 3�b��,
where the harmonic and quasiharmonic formation free ener-
gies increase with increasing temperature. When comparing
the harmonic, quasiharmonic, and total formation free ener-
gies for a given potential, we see that the harmonic values
generally overestimate the free energy. For the MP-CS2 po-
tential �Fig. 3�b��, the over estimation is considerable indi-
cating its strongly anharmonic nature, whereas for the Men-
delev �Fig. 3�a�� and MP-CS3 �Fig. 3�c�� potentials the
anharmonic correction is relatively small and indeed negli-
gible for the MP-CS3-30 potential.

B. Formation entropies

The temperature dependence of the vibrational free en-
ergy may be largely understood from knowledge of the vi-
brational entropy. Thermodynamically, entropy may be ob-
tained from the free energy via

S = −
�F

�T
. �10�

For a direct measure of the total formation entropy, the re-
sults contained within Fig. 3 are fitted to 
F�T�=
E0
−
SVT, where 
E0 is the 0 K formation energy of the �110�

TABLE I. Equilibrium bcc volume per atom �Å3� and energy
per atom �eV� as a function of temperature for the empirical poten-
tials considered in the present work. Also shown are the �110� in-
terstitial dumbbell formation energies �eV� as a function of tem-
perature for atomic configurations whose volume per atom is set to
the corresponding equilibrium bcc volume per atom.

Temperature
�K�

bcc equilibrium
volume per atom

�Å3�

bcc energy
per atom

�eV�

�110� dumbbell
formation energy

�eV�

MP-CS2

0 11.7768 −4.3160000 3.65

300 11.7381 −4.3159312 3.63

400 11.7135 −4.3158156 3.61

500 11.6972 −4.3157079 3.60

600 11.6912 −4.3156619 3.60

Mendelev-2003

0 11.6393 −4.12243923 3.52

300 11.6845 −4.12234347 3.51

400 11.7141 −4.12217542 3.51

500 11.7472 −4.12189093 3.50

600 11.7859 −4.12142889 3.49

Mendelev-2004

0 11.6393 −4.01298646 3.53

300 11.7001 −4.01280968 3.51

400 11.7295 −4.01259930 3.51

500 11.7602 −4.01229416 3.50

600 11.7948 −4.01186661 3.49

MP-CS3-00

0 11.7768 −11.64735826 4.19

300 11.9001 −11.64683629 4.13

400 11.9297 −11.64650881 4.12

500 11.9595 −11.64610405 4.11

600 11.9889 −11.64562897 4.09

MP-CS3-30

0 11.7768 −9.89319216 4.23

300 11.8387 −9.89301704 4.21

400 11.8573 −9.89289711 4.20

500 11.8755 −9.89274959 4.19

600 11.8941 −9.89256858 4.18
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dumbbell taken from Table I and 
SV is the formation en-
tropy at fixed volume per atom. We note that the formation
entropy of a defect structure is defined analogously to the
formation free energy �Eq. �9��. In columns one to four of
Table II we show the results of this method applied to all
three free-energy estimates. While absolute entropy can only
be positive, the formation entropy of a defect can be negative
and can simply indicate that the defect lowers the entropy
relative to that of the surrounding lattice.

Within the harmonic and quasiharmonic approximations,
the absolute global and local vibrational entropies may be
easily obtained by explicitly differentiating Eqs. �4� and �5�,
respectively. Table II also lists for all potentials of the har-
monic formation entropy at 300 K at fixed volume �
S0�,
constant volume per atom �
SV�, and zero hydrostatic pres-
sure �
SP�. For the case of fixed volume and constant vol-
ume interstitial structures, the reference is the equilibrium
bcc lattice for the corresponding potential. Data from the
literature are also shown, in particular, the constant pressure
calculation of Marinica and Willaime14 and a recent ab initio
calculation of Lucas and Schaeublin.16 Figure 4 displays
these results as a function of volume per atom. For the
Mendelev-2003 and MP-CS2 potentials, the formation en-
tropy decreases with increasing volume per atom, while for
the Mendelev-2004 and MP-CS3 potentials the formation en-
tropy increases. These values compare favorably to the har-
monic values derived from the fit to 
F�T�=
E0−
SVT also
shown in Table II.

The trends seen in Fig. 4 as a function of volume can be
largely understood by assuming that the difference between

SV and 
SP arises from how the surrounding bcc lattice
responds to the change in volume per atom. For an undis-
torted bcc lattice it can be shown that the change in entropy
is given by


S = SV − SP = �B
V , �11�

where � is the constant pressure thermal volume expansion
coefficient, B is the isobaric bulk modulus, and 
V is the

corresponding change in volume. Assuming this expression,
Fig. 5�a� plots the derived thermal volume expansion coeffi-
cients for the potentials. Thus the anomalous volume per
atom dependence seen for the Mendelev-2003 and MP-CS2
potentials may be understood through these potentials exhib-
iting a negative thermal expansion at T=0. To assess the
validity of Eq. �11�, finite temperature and zero-hydrostatic
pressure molecular dynamics simulations using the
Parrinello-Rahman barostat method24 are performed for the
bcc lattice as a function of low temperature and the mean
volume per atom measured. Figure 5�b� plots this as a func-
tion of temperature for all the potentials and we see again
�see Table I� that the MP-CS2 potential exhibits thermal con-
traction with increasing temperature. For the Mendelev-2003
potential thermal contraction is also evident at these low
temperatures with thermal expansion beginning at approxi-
mately 50 K. For the remaining potentials a positive thermal-
expansion coefficient is found—indeed in Ref. 5 it is stated
that the Mendelev-2004 has been corrected to produce a
positive thermal expansion. The corresponding zero-pressure
thermal-expansion coefficients are obtained by taking the

FIG. 2. �Color online� The migration pathways of a �110� dumb-
bell interstitial derived from a nudged elastic band calculation for
the empirical potentials Mendelev-2003, Mendelev-2004, MP-CS3-
00, MP-CS3-30, and MP-CS2.

FIG. 1. �Color online� �H1

−H0�
 for the �110� interstitial
dumbbell as a function of the ther-
modynamic integration parameter

 for the temperatures 300 and
600 K for the empirical potentials
�a� Mendelev-2003, �b� Mendelev-
2004, �c� MP-CS3-00, �d� MP-
CS3-30, and �e� MP-CS2. At val-
ues of 
 close to unity, �H1−H0�


does not converge for all empirical
potentials due to diffusion of the
defect.
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gradient of these curves at T=0 and are displayed in Fig. 5�a�
demonstrating good agreement with those calculated through
Eq. �11�. Thus the volume dependence of the formation en-
tropies is primarily due to the entropy change in the sur-
rounding lattice, which can be reasonably well described by
the thermal-expansion properties of the corresponding em-
pirical potential via Eq. �11�. On the other hand, as shall be
demonstrated in the following paragraphs, the absolute value
of the formation entropy appears to be more strongly con-
trolled by the core properties of the interstitial which in turn
depends sensitively on the shorter range �far from equilib-
rium� properties of the empirical potential.

Figure 6 displays a 110 plane of atoms containing the
interstitial defect in the center. Also shown are four off-plane
atoms which are nearest neighbor to the two atoms of the
split dumbbell–for location of the interstitial dumbbell and
these off-plane atoms see the inset in Fig. 6�a�. The simula-
tion cell has a volume per atom equal to that of the corre-
sponding 0 K bcc lattice. Figures 6�a� and 6�b� are for the
MP-CS2 potential, Figs. 6�c� and 6�d� are for the Mendelev-
2003 potential and Figs. 6�e� and 6�f� are for the MP-CS3-30
potential. In Figs. 6�a�, 6�c�, and 6�e� the atoms are colored
according to their hydrostatic pressure calculated using the
virial expression26 and we see that the local pressure signa-
ture of the interstitial is similar for all three potentials. We
note that in all cases the atoms far from the interstitial core
are close to zero pressure. This is typical when using atomic
configurations that have a fixed volume per atom equal to

that of the bulk. Figures 6�b�, 6�d�, and 6�f� show the same
atoms now colored according to their local harmonic entro-
pies relative to the equilibrium bulk bcc in units of the Bolt-
zmann constant calculated at 300 K. Unlike the pressure dis-
tribution, large differences in the local entropy signatures are
seen at the core of the defect across all three potentials. We
note that in Figs. 6�b�, 6�d�, and 6�f� those atoms having
entropy less than −0.2kB are all similarly colored dark blue
and those having a value greater than 0.2kB are similarly
colored red. For intermediate values the corresponding linear
color bar can be used. For the MP-CS2 potential the core
atoms all have local relative entropies that are less than that
of the perfect lattice with the split dumbbell atoms having
the most negative value of −1.2kB. On the other hand for the
Mendelev-2003 potential the core atoms are generally
greater than the perfect lattice varying between −0.066kB and
0.28kB for the split dumbbell atoms. For the MP-CS3-30
potential the variation in local entropies relative to the per-
fect lattice is somewhat intermediate varying between
−0.188kB and 0.099kB. We note that the local entropy signa-
ture for the Mendelev-2004 potential �not shown� is quite
similar to that of the Mendelev-2003 potential, whereas for
the MP-CS3-00 potential �not shown�, the entropy signature
differs at the core region from that of MP-CS3-30 by several
kB.

Figure 7 shows only the core interstitial atoms using the
same viewing direction as in Fig. 6, where now the atoms are
colored according to their fractional local entropies in which

FIG. 3. �Color online� The for-
mation free energy of the �110�
dumbbell interstitial derived from
the harmonic, quasiharmonic, and
thermodynamic integration tech-
niques using �a� the Mendelev-
2003 and Mendelev-2004 empiri-
cal potentials, �b� the MP-CS2
empirical potential, and �c� the
MP-CS3-00 and MP-CS3-30 em-
pirical potentials. The solid lines
represent the harmonic, the tri-
angled data represent the quasihar-
monic, and the filled circles repre-
sent the total free energy.

TABLE II. Formation entropies in units of kB of the �110� interstitial dumbbell obtained by linear fitting
to the free-energy curves of Fig. 3 and also via explicit calculation through Eqs. �4� and �9�. For comparison,
values are also shown from a similar calculation �Ref. 14� using the considered empirical potential �in
parenthesis� and an ab initio result �Ref. 16�.

Harmonic
method

Quasiharmonic
method

Thermodynamic
integration method

Harmonic

S0

Harmonic

SV

Harmonic

SP

MP-CS2 −26.58 −12.71 −0.28 −23.66 −26.59 −24.73

Mendelev-2003 1.80 4.08 5.67 2.94 1.62 1.27 �2.84�
Mendelev-2004 2.55 4.20 4.92 1.81 2.72 4.02

MP-CS3-00 0.71 1.31 4.02 −5.39 0.53 3.13

MP-CS3-30 −0.63 −0.34 0.28 −4.17 −0.65 0.69

Ab initio �Ref. 16� 0.24
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zero represents the minimum value and unity the maximum
value of the core structure for the given potential. For the
case of MP-CS2 �Fig. 7�a�� the two split dumbbell core at-
oms have the minimum �most negative at −1.2kB� local rela-
tive entropy with the neighboring atom’s entropies increasing
to the maximum value. For MP-CS3-30 �Fig. 7�c�� a larger
number of core atoms have a local entropy near the mini-
mum value �most negative at −0.188kB�. On the other hand
for the Mendelev-2003 potential �Fig. 7�b�� the split dumb-
bell pair of atoms has the maximum local entropy at 0.28kB.
Thus in terms of the local entropy signature the three inves-
tigated potentials give widely different signatures corre-
sponding to differing total formation entropies �Fig. 4� and
thus differing temperature-dependent formation free ener-
gies.

IV. DISCUSSION AND CONCLUDING REMARKS

When considering the applicability of the presented free-
energy calculations a number of factors must be considered
that are specific to bcc Fe. In particular, ferromagnetism sta-
bilizes the Fe bcc phase at low temperatures and with rising
temperature, spin fluctuations play an increasingly important

role in material bonding leading to the �-bcc to �-fcc phase
transition at �1000 K.27 Such magnetic spin fluctuations
will contribute in two ways that have not been included in
the current calculation. First, spin fluctuations will directly
affect the interatomic bonding giving an explicit and strong
temperature dependence of related material properties.28,29

For example, the elastic stiffness constants of bcc Fe are
known to change significantly as the temperature approaches
the Curie temperature,30,31 resulting in a strong increase in
the elastic anisotropy due to the �110� shear modulus de-
creasing finally to zero at the �-bcc to �-fcc phase transition.
Recently this aspect has been used to explain the energetics
of �100� and �111� prismatic dislocation loops in bcc Fe as a
function of temperature,32 where the anisotropic elastic en-
ergy of the former scales as a square root of the 110 shear
modulus. It is therefore expected that such a change in the
�110� shear modulus will also strongly affect the elastic field
around the �110� dumbbell interstitial leading to a non-
negligible temperature dependence of the defect’s formation
energy. Inspection of the temperature dependence of the elas-
tic stiffness constants reveals significant changes that have
already occurred at approximately 600–700 K,31 and since
current empirical potentials are all fitted to either 0 K or low
temperature experimental elastic constants this sets an upper
temperature limit to the applicability of the present results.
We note that this limitation does not only apply to the
present calculations but all atomistic calculations that em-
ploy empirical potentials to study the high-temperature be-
havior of defect structures within bcc Fe. A second aspect is
the entropic contribution due to the additional degrees of
freedom associated with the spin fluctuations, which must
also be added to the free energy. The recent development of
a spin lattice dynamics simulation technique for bcc Fe that
converges to the MP formalism at 0 K �Ref. 33� offers a
promising method to address this aspect and to ascertain the
quantitative contribution of spin fluctuations to the formation
entropy and free energy of a defect.

As with all such classical molecular dynamics or Monte
Carlo simulations there also exists a lower temperature range
below which quantum effects begin to dominate. A general
rule is that such simulations should not be performed at tem-
peratures approximately one third below the Debye tempera-

FIG. 4. �Color online� Harmonic formation entropies of the
�110� dumbbell interstitial as a function of lattice constant for the
considered empirical potentials at 500 K.

FIG. 5. �Color online� �a�
Thermal-expansion coefficients
derived from formation entropy
volume dependence and finite-
temperature molecular dynamics
simulations and �b� percentage
volume increase as a function of
temperature derived from molecu-
lar dynamics calculations.
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ture of the material; a regime where the Bose-Einstein dis-
tribution of phonon energies begin to strongly manifest itself.
For bcc Fe the Debye temperature is �470 K and thus clas-
sical molecular dynamical simulations should not be per-

formed at temperatures lower than �150 K. Such quantum
effects can be addressed within the harmonic approximation
by replacing the Maxwell-Boltzmann distribution used in
Eqs. �4� and �5� with the Bose-Einstein distribution; however
for dynamical calculations, no computationally efficient
method suitable for large atomic configurations is available.

Thus if one does not consider the entropy due to spin
fluctuations, the applicable range of the present free-energy
calculations is between �150 and �700 K, which is at the
lower temperature end of the range of temperatures where
ferritic and ferritic martensitic steels are expected to be used
in fission and fusion applications.

The total free-energy calculations also reveal the onset of
diffusion at temperatures above �500 K. Diffusion of the
�110� dumbbell interstitial at these higher temperatures re-
mains a rare event, in the sense that the defect has time to
equilibrate before its next lattice “hop,” and thus it becomes
valid to decouple entropy contributions into a vibrational
term and a lattice configuration term as has been done here
and in previous works. Such a separation is however not
justified for the higher energy �111� interstitial defect struc-
ture which is inherently unstable in bcc Fe for all tempera-
tures. Moreover in nonmagnetic bcc transition metals, where
it is the �111� interstitial defect that is the lowest energy
structure, the defect is inherently mobile at all temperatures
with a migration barrier in the sub 100 meV energy
range.3,19,34,35 Thus diffusion cannot be considered as a se-
quence of rare events and the 0 K relaxed structure and its
vibrational frequency spectrum will give little insight into
the thermal excitations of the mobile defect. It is for these
reasons that the present work does not consider the harmonic
properties of the �111� interstitial, despite the harmonic ap-
proximation being adequate for the �110� interstitial for some
empirical potentials. Past work that compares the harmonic
free energies of the �110� and �111� defects as a function of
temperature in Fe, and in particular, a crossover of stability
at higher temperatures, should therefore be treated with care.

The present work has been performed using five modern
empirical potentials which demonstrate quite different defect
entropy core signatures with the greatest difference originat-
ing from the MP-CS2 potential. Although it is difficult to
rationalize the present results in terms of general features of
these empirical potentials, recent work20 has shown that the
MP-CS2 potential is wrongly and strongly anharmonic as
evidenced in Fig. 3�b�. It was found that the third-order elas-
tic constants of MP-CS2 are large and in some cases of the
incorrect sign when compared to experiment. For the
Mendelev-2003, Mendelev-2004, and MP-CS3 potentials, a

a)a)

a)c)

a)e)

b)b)

b)d)

b)f)

FIG. 6. �Color online� Atomic 110 plane containing a �110�
dumbbell interstitial defect where in �a�, �c�, and �e� atoms are
colored according to their local hydrostatic pressure and in �b�, �d�,
and �f� atoms are colored according to their local harmonic vibra-
tional entropies at 500 K. �a� and �b� are for the MP-CS2 potential,
�c� and �d� are for the Mendelev-2003 potential, and �e� and �f� are
for the MP-CS3-30 potential. Inset in Fig. 6�a� is a schematic of the
dumbbell with the same orientation of that of the main figure with
the 110 dumbbell axis pointing upwards. Those atoms labeled with
a black circle are above the 110 atomic plane and are NN to the split
dumbbell.

a)a) b)b) a)c) FIG. 7. �Color online� Core at-
oms of �110� dumbbell visualized
for the �a� MP-CS2, �b� Mendelev-
2003, and �c� MP-CS3-30
potentials. Atoms are colored ac-
cording to their fractional local en-
tropies derived from each of the
minimum and maximum entropy
values of the corresponding core
configuration.
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similar analysis has demonstrated the third-order elastic con-
stants to be smaller and generally of the correct sign. This is
a somewhat reasonable conclusion since how the lattice im-
mediately surrounding the defect deforms �nonlinearly� will
be controlled by such higher-order moduli. This aspect
should be considered when developing new semiempirical
potentials.

In conclusion, the harmonic and anharmonic contributions
to the free energy of the �110� interstitial dumbbell have
been calculated using the thermodynamic integration
method. The present work shows for the Mendelev
potentials4,5 and a class of developed magnetic potentials20

fitted to the third-order elastic stiffness constants that the
harmonic approximation to the free energy works relatively
well since these potentials are not strongly anharmonic. This
is an encouraging result since it justifies, when diffusion is
absent or minimal, the often used harmonic approximation
approach of diagonalizing the force matrix of a relaxed de-
fect structure to obtain its vibrational properties. In fact the
harmonic approximation to the vibrational free energy and
entropy can be routinely used for large defect structures such
as interstitial clusters, dislocations, dislocation loops, and
grain boundaries, whereas the thermodynamic integration
calculation of the free energy and entropy is a computation-
ally intensive procedure restricted to temperatures above the
Debye value, where the classical Maxwell-Boltzmann distri-
bution of vibrational excitations is justified. It however must

be remembered that, unique to bcc Fe, there also exists a
contribution to the free energy due to the degrees of freedom
associated with spin fluctuations at finite temperature and
that these must also be taken into account when conclusions
are made about defect structure stability—particularly at the
higher temperature range.

ACKNOWLEDGMENTS

S.C. and P.M.D. acknowledge the Paul Scherrer Institut–
Forschungskommission for partial financial support and Hel-
ena Van Swygenhoven for her support of this project. This
work was also partly funded jointly by the United Kingdom
Engineering and Physical Sciences Research Council and by
the European Communities under the contract of Association
between EURATOM and UKAEA. This work was carried
out within the framework of the European Fusion Develop-
ment Agreement.

APPENDIX: THE MAGNETIC POTENTIAL

The magnetic potential6,7 is an interatomic potential for
bcc Fe based on the Stoner model of ferromagnetism within
the second-moment approximation to the electronic density
of states. The energy for a given configuration of N atoms is
of the EAM form

TABLE III. Optimal parameter set for MP-CS3-00 and MP-CS3-30.

MP-CS3-00 MP-CS3-30

A 18.42439658215181 14.96128089567820

B 6.318801651265125 4.754553632722176

Knot point fn rn
f fn rn

f

1 1.415806965777580 3.600000000000000 2.403773687542704 3.600000000000000

2 −3.172941853042061 3.457142857142857 −5.616539002612204 3.457142857142857

3 2.518779011423245 3.314285714285715 4.518414772417062 3.314285714285715

4 1.5223391656998341E-002 3.171428571428572 0.4511822086528371 3.171428571428572

5 −2.668402591084014 3.028571428571428 −3.719791696378764 3.028571428571428

6 5.300933735220243 2.885714285714286 3.176870270223375 2.885714285714286

7 −6.253127207203284 2.742857142857143 −0.5435529434135428 2.742857142857143

8 4.354340872738243 2.600000000000000 4.835150824080221 2.600000000000000

Knot point Vn rn
V Vn rn

V

1 0.1671995832644735 3.640000000000000 4.852979304356857 3.400000000000000

2 5.748723734256789 3.457142857142857 −7.762255546111966 3.285714285714286

3 1.238260767101568 3.285714285714286 0.2118336138629596 3.171428571428571

4 −27.80866986307653 3.114285714285714 −1.592481362817459 3.057142857142857

5 47.11807523555423 2.942857142857143 0.1193277971484847 2.942857142857143

6 −27.30051838220325 2.771428571428571 23.52407656927417 2.828571428571429

7 −0.1513119116248357 2.600000000000000 −7.298957800246290 2.714285714285714

8 40.00000000000000 2.500000000000000 −1.386774762653686 2.600000000000000


 f 1.67606860 2.04390805


V 1.54501120 0.19900397
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E = 	
i=1

N

F��i� +
1

2	
i�j

N

V�rij� , �A1�

where V�r� is a repulsive pair potential and

�i = 	
i�j

N

f�rij� �A2�

is the local electronic density on atom i. In Eq. �A1�, the
embedding energy is given by

F��� = − A
� −
B

ln 2
�1 − 
��ln�2 − ����1 − �� . �A3�

Here the first term represents the regular Finnis-Sinclair36

nonmagnetic d-state band energy and the second term the
ferromagnetic band energy where ��x� is the Heaviside step
function which switches off ferromagnetism when ��1. The
original parametrization �MP-CS2� is given in Ref. 7 in
which the radial functions are represented via third-order
knot functions.

The parametrizations MP-CS3-00 and MP-CS3-30 used
in the present work constitute the partial results of a fitting
attempt20 of the MP formalism �Eqs. �A1�–�A3�� to a wider
range of bcc Fe experimental and ab initio data including
third-order elastic constants, the nondegenerate core struc-

ture of a 1
2 �111� perfect screw dislocation via the fitting to a

multistring Frenkel-Kontrova model of the screw
dislocation.37 To include continuity of the radial functions to
the fourth derivative the radial functions V�r� and f�r� are
represented by fifth-order knot functions modulated by an
exponential

V�r� = 	
n=1

NV

Vn�rn
V − r�5e−
V�rn

V−r���rn
V − r� , �A4�

f�r� = 	
n=1

Nf

fn�rn
f − r�5e−
f�rn

f −r���rn
f − r� . �A5�

Here the positions of the knot functions rn
V and rn

f , their
coefficients Vn and fn, and 
V and 
 f values become fitting
parameters of the optimization. For completeness of the
present work we present the parametrizations for MP-
CS3-00 and MP-CS3-30 in Table III. The bulk equilibrium
properties to which these potentials have been fitted to are
contained in Ref. 7–importantly, the equilibrium bcc lattice
constant for MP-CS3-00 is 2.867 696 Å and for MP-CS3-30
it is 2.8665 Å. The broad fitting approach and the specific
defect database of material properties and how they have
been weighted during the fit will be presented in Ref. 20.
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